l-7o EB Peak Period Shoulder Lane Project

Project Number: NHPP 0703-401
Project Code: 19474

Technical Team Meeting \#3

September 23, 2013
CDOT I-70 Mountain Corridor | HDR Engineering, Inc.

1. INTRODUCTIONS AND OVERVIEW

- Project Schedule
- Other Project Efforts

2. RESPONSES TO TECHNI CAL TEAM ISSUES

- Benefits of PPSL
- Definition of Interim

3. OUTCOMES FROM ISSUES TASK FORCE MEETINGS

- Section 106
- Roadway
- SWEEP
- Emergency Response

4. ISSUES TIMELINE

5. REVIEW PROPOSED SOLUTIONS

- Left vs. Right
- Roadway Width
- Widening Median vs. Creek
- Acceleration and

Deceleration Lanes
6. DEVELOP CRITERIA FOR:

- Retaining Walls
- Emergency Response

7. NEXT STEPS

＞SAFETY

STEP 1
 Define Desired Outcomes and Actions

＞MOBILITY

＞CONSTRUCTABILITY
＞COMMUNITY
＞ENVIRONMENT
》ENGINEERING CRITERIA AND AESTHETICS
＞SUSTAINABILITY

STEP 2
 Endorse the Process

STEP 3
 Establish Criteria

STEP 4

Develop Alternatives and Options

```
STEP 5
Evaluate, Select and
Refine Alternatives and
Options
```

STEP 6
Finalize Documentation
and Evaluation Process

>ENVIRONMENTAL BASELINE DATA

- EARLY OCTOBER
$>$ CONCEPT OF OPERATIONS REPORT
- LATE OCTOBER
>PRELIMINARY DESIGN MEETING
- NOVEMBER 20
$>$ OPEN TO TRAFFIC
- JULY 2015
> RAMP Recommendations $>$ Traffic and Revenue > Twin Tunnels $>$ AGS

> PARKING LOT

- Benefits of PPSL
- Are managed lanes a requirement?
- Interim definition
- Lane width, what is the smallest lane width that is safe?
- ROD Compatibility
- EA versus Cat Ex
- Highway 103 bridge
- Snow removal
- Whole transportation system Including local roads
- Allows CDOT to capitalize on the Twin Tunnels Investment by providing a reduced congestion alternative for 12 miles of the I-70 corridor.
- Provides faster speeds in the managed lane (faster by 25 to 35 mph) and the general purpose lanes (faster by 20 to 30 mph).
- Reduces travel times by up to $\mathbf{4 2 \% - 4 8 \%}$. Travel times are reduced in all lanes.
- Reduces congestion related crashes.
- Provides a reliable trip.

> DEFINITION OF INTERIM

- Definition to be captured in Concept of Operations and MOU.
- Opening day projections estimate it will operate 3.5% of total time (in 3-9 hour intervals) for 58 days per year. Based on 2900 vehicles per hour.
- 2020 projections estimate that percentage raises to 3.9% or 64 days per year.
- Check in on overall PPSL effectiveness in 2020.

>SECTION 106

> LOCAL AGENCY/ROADWAY > SWEEP >EMERGENCY RESPONDERS
\qquad
\qquad 2014
\qquad
FEB

$$
\begin{array}{l|}
\text { JAN } \\
\hline \text { | 4TH } \\
\hline \text { NEEK }
\end{array}
$$

Acceleration Lane	A lane adjacent to the primary travel lane that allows drivers to accelerate before merging into traffic on the main road
Auxiliary Lane	Along a highway an auxiliary lane connects entrance and exit ramps, with the entrance ramp or acceleration lane from one interchange leading to the exit ramp or deceleration lane of the next.
Deceleration Lane	A lane adjacent to the primary travel lane that allows drivers to pull off the main road and decelerate safely in order to turn or exit without slowing the traffic behind.
EOP	Edge of pavement.
General Purpose Lane	A traffic lane that does not have any restrictions, such as time of day or type of vehicle that may use the lane.
Managed Lane	In this case, the managed lane operates during a peak period and traffic utilizing that lane will be required to pay a toll.
Peak Period Shoulder Lane	This is a lane of traffic that may function either as a shoulder and a managed lane or a shoulder and a general purpose lane, depending on left versus right.
Breakdown Lane	A strip of ground with a hard surface beside a major road where vehicles can stop in an emergency.
Rumble Strips	A series of raised strips across a road or along its edge that make a loud noise when a vehicle drives over them in order to warn the driver to go slower or that he or she is too close to the edge of the road
Active Traffic Management	A method of increasing peak capacity and smoothing traffic flows on busy major highways. Techniques include variable speed limits, hard-shoulder running and ramp-metering and may be controlled by overhead variable message signs .
Traffic Management Operations	A coordinated approach to road traffic management where ITS traffic data is utilized to provide traffic information across various platforms to allow for more effective incident management and more efficient management of traffic.
Dynamic Toll	A toll per vehicle that increases or decreases depending on the level of congestion in order to maintain the smooth flow of traffic.
Median	The central area between divided highway lanes with traffic travelling in opposite directions.
Interim Solution	A capacity improvement on a roadway that is not intended to be a permanent solution.

FAIR / BETTER / BEST RATING SYSTEM

1. Proposed by Project Team
2. Augmented by the Technical Team
3. Utilized by the Project Team to develop solutions
4. Results presented to the Technical Team
5. Technical Team offers feedback
6. As necessary, Project Team incorporates refinements

FAIR BETTER BEST

LEFT VS. RIGHT

TRUCK TRAVEL - ON PEAK

Right Option

Left Option

SIGNAGE

\begin{tabular}{|c|c|c|}
\hline Peak Period Operations \& LeFT \& RIGHT \\
\hline \multicolumn{3}{|l|}{SAFETY} \\
\hline \multicolumn{3}{|l|}{Breakdown lane on the left} \\
\hline Rumble strips \& \(\checkmark\) \& \\
\hline \begin{tabular}{l}
Truck lane use \\
DRIVER EXPECTANCY \\
Single lane managed lane and peak period shoulder lane \\
Lane shift
\end{tabular} \& \(\checkmark\)

\checkmark \&

\hline striping \& \checkmark \&

\hline \multicolumn{3}{|l|}{InFRASTRUCTURE}

\hline \multicolumn{3}{|l|}{Widening (acceleration lane)}

\hline \multicolumn{3}{|l|}{Signage}

\hline \multicolumn{3}{|l|}{OPERATIONS}

\hline Travel Time \& \checkmark \&

\hline
\end{tabular}

$\left.\begin{array}{|lc|c|}\hline \text { Off Peak Operations } & \text { LEFT } & \text { RIGHT } \\ \hline \text { SAFETY } & & \\ \hline \text { Breakdown lane on the left } & & \checkmark \\ \hline \text { Rumble strips } & \checkmark & \\ \hline \begin{array}{l}\text { Truck lane use } \\ \text { DRIVER EXPECTANCY }\end{array} & \checkmark \\ \begin{array}{l}\text { Single lane managed lane and } \\ \text { peak period shoulder lane } \\ \text { Lane shift }\end{array} & \checkmark & \checkmark\end{array}\right)$

Left vs. Right

ID	Criteria	Options Ranking	Fair ${ }^{\text {a }}$ Better ${ }^{\text {a }}$ Best
		Left-Side	Right-Side
Evaluation Criteria			
	1 Addresses safety during PPSL operations	- Standard ML striping with solid white line -GP lanes are consistent on peak and off peak -Allows for traditional rumble strips	- Unconventional ML striping with dashed line. -GP lanes shift between on peak and off peak operations
2	Maintains safety during non-peak times	-Left-side breakdown lane (non-standard)	- Right-side breakdown lane (standard)
	3 Improves mobility during peak times	- Increases weaving to/from the express lane - Enhances travel time - Commercial vehicles may operate in right lane	-Decreases weaving to/from the express lane -Commercial vehicles must operate in middle lane
	4 Minimizes the effort required to maintain the option	- Reduces signing and structures -Creates snow removal/ sediment control challenges -Conventional striping patterns	- Increases signing and structures - Unconventional striping patterns
	Enables the project team to achieve the goal of opening PPSL by July 2015	-Not a differentiator	
	Creates infrastructure investments that are reasonable to construct and provide the best value for their life cycle, function, and purpose.	-Configuration consistent with CDOT similar projects on North 1-25, US-36	- Increases signing infrastructure more than left-side option - Configuration not consistent with CDOT similar projects
7	Allows for a process to engage and communicate with all the local, regions and national users of the I-70 Mountain Corridor	- Not	ferentiator

Left vs. Right

ID	Criteria	Options Ranking	Fair	Better	Best
		Left-Side	Right-Side		
Evaluation Criteria					
8	Creates opportunities to "correct past damage"	- Not a differentiator			
9	Provides access and protects opportunities for enhancements to tourist destinations, community facilities, interstate commerce and also limits disproportionate effects to the community.	- Not a differentiator			
10	Incorporates sustainability by using locally available materials and environmentally-friendly processes	- Not a differentiator			
11	Protects or creates unique features for the area as a gateway	-Creates an opportunity to replace the 103 bridge	- Opportunity to maintain the 103 bridge		
12	Protects wildlife needs	- Not a differentiator			
13	Protects Clear Creek	- Not a differentiator			
14	Protects the defining historical elements of Clear Creek County	- Less signs impacting historic viewshed	-More signs impacting historic viewshed		
15	Meets CDOT's and industry standards	- Not a differentiator			
	Achieves the mountain mineral belt aesthetic guidelines	- Not a differentiator			

Left vs. Right

ID	Criteria	Options Ranking	Fair	Better Best
		Left-Side	Right-Side	
Evaluation Criteria				
17	Meets the I-70 Mountain Corridor design criteria	-Not a differentiator		
18	Preserves opportunities for the AGS and the ultimate preferred alternative	- Not a differentiator		
19	Adaptable for future changes/projects	- Less infrastructure removal (signage)	- Additional infrastructure removal	nage)
ID	Criteria	Options Ranking	Fair	Better ${ }^{\text {c }}$ Best
		Left-Side	Right-Side	
Issue Specific Criteria				
	Meets driver expectations/roadway environment/precedence set for express lanes in the state	- Standard ML striping with solid white line - Breakdown lane on non-traditional left side -GP lanes are in the same configuration (on peak versus off peak) -Consistent with US 36 and North I-25 managed lane corridors	-Unconventional ML striping with dashed line. - Breakdown lane on traditional right side - Possible fewer emergency pullouts required - Not consistent with North I-25 and US 36 managed lane corridors -GP lanes are in different configurations (on peak versus off peak)	
2	Minimizing signing types and locations throughout the corridor	- Requires less signing	- Requires more signing	
	Maintains fluid ramp access and standard ramp geometry on and off-ramps accesses and ramp geometry.	- Not a differentiator		
Identification of Preferred Option: Summary		Left-Side PPSL Operation provides greater enhancement of safety and operational benefits to the traveling public, as well as a reduction of impacts to the stakeholders along the corridor during peak and off peak operations. The analysis accounted for, but was not limited to Safety, Driver Expectancy, Infrastructure and Operations.		

ROADWAY WIDTH

Draft: Eastbound PPSL Hybrid Alternative Overview (1 of 4)

PEAK PERIOD SHOULDER LANE CRITERIA

DRAFT

Roadway Width

ID	Criteria	Options Ranking \quadFair Better Best	
		Hybrid Width	40^{\prime} or greater width
Evaluation Criteria			
1	Addresses safety during PPSL operations	- Narrower, less width for driver error	-Wider shoulder widths consistently
2	Maintains safety during non-peak times	- Narrower, less width for driver error	-Wider shoulder widths consistently
3	Improves mobility during peak times	-Narrower section causes generally slower speeds	-Wider section allows for generally faster speeds
4	Minimizes the effort required to maintain the option	-Less infrastructure, less maintenance	-Additional infrastructure, additional maintenance
5	Enables the project team to achieve the goal of opening PPSL by 1-Jul-15	- Narrower cross section could require less effort for NEPA, design, and construction.	-Wider cross section could require additional effort for NEPA, design, and construction.
6	Creates infrastructure investments that are reasonable to construct and provide the best value for their life cycle, function, and purpose.	-Less infrastructure is more consistent with an interim definition for the project.	-More infrastructure would be required (widening of all I-70 bridges, increase in wall areas)

Roadway Width

ID	Criteria	Options Ranking Fair		Better	Best
		Hybrid Width	40^{\prime} or greater width		
Evaluation Criteria					
7	Allows for a process to engage and communicate with all the local, regions and national users of the I-70 Mountain Corridor	- Not a differentiator			
8	Creates opportunities to "correct past damage"	- Fewer Opportunites	- More Opportunites		
9	Provides access and protects opportunities for enhancements to tourist destinations, community facilities, interstate commerce and also limits disproportionate effects to the community.	- Not a differentiator			
10	Incorporates sustainability by using locally available materials and environmentally-friendly processes	- Not a differentiator			
11	Protects or creates unique features for the area as a gateway	- Fewer Opportunites	- More Opportunites		
12	Protects wildlife needs	-Less barrier effect impeding highway permeability	- More barrier effect impeding highwa	rmeabi	
13	Protects Clear Creek	-Less potential for encroachment into creek -Less visual impact for walls - More space for WQ features to be added	- More potential for creek encroachm - More visual impact from walls - Less space for WQ features to be ad		
14	Protects the defining historical elements of Clear Creek County	-Less infrastructure, less visual impact	- More infrastructure, more visual imp encroachment into historic properties	more	
15	Meets CDOT's and industry standards	- Rarely meets minimum standards	- More frequently meets minimum st	ards	

Roadway Width

ID	Criteria	Options Ranking		Better	Best
		Hybrid Width	40' or greater width		
Evaluation Criteria					
16	Achieves the mountain mineral belt aesthetic guidelines	- Less opportunities	- More opportunities		
17	Meets the I-70 Mountain Corridor design criteria	- Not a differentiator			
18	Preserves opportunities for the AGS and the ultimate preferred alternative	- Not a differentiator			
19	Adaptable for future changes/projects	- Not a differentiator			
ID	Criteria	Options Ranking F		Better	Best
		Hybrid Width	40' or greater width		
Issue Specific Criteria					
1	Clear Creek County Preference	- Meets preference	- Less preferred		
2	Impacts to compounding safety risk factors	- More safety risk factors	- Fewer safety risk factors		
3	Meets definition of a PPSL project	- Optimizes existing infrastructure	- Increased infrastructure improvements		
4					
Identification of Preferred Option: Summary					

WIDENING MEDIAN VS. CREEK

MEDIAN WIDENING OPTION

WIDENING LOOKING EAST

MEDIAN WIDENING OPTION

FALL RIVER - CREEKSIDE
WIDENING LOOKING EAST
FROM SOUTH SIDE OF CREEK

PEAK PERIOD SHOULDER LANE CRITERIA

DRAFT

Widening Median vs. Creek

ID	Criteria		
		Widen to Creek	Widen to Median
Evaluation Criteria			
1	Addresses safety during PPSL operations	- Not a differentiator	
2	Maintains safety during non-peak times	- Not a differentiator	
3	Improves mobility during peak times	- Not a differentiator	
4	Minimizes the effort required to maintain the option	- More difficult to maintain taller walls along creek	-Easier to maintain shorter walls and access from roadway.
5	Enables the project team to achieve the goal of opening PPSL by 1-Jul-15	-More wall area to design \& build increases schedule	-Less wall area to design \& build reduces schedule
6	Creates infrastructure investments that are reasonable to construct and provide the best value for their life cycle, function, and purpose.	-More wall area has more impacts, is more expensive, and requires more maintenance	-Less wall area has less impacts, is less expensive, and requires less maintenance

Widening Median vs. Creek

ID	Criteria	Options Ranking \quad Fair		Better	Best
		Widen to Creek	Widen to Median		
Evaluation Criteria					
7	Allows for a process to engage and communicate with all the local, regional and national users of the I-70 Mountain Corridor	- Not a differentiator			
8	Creates opportunities to "correct past damage"	- Not a differentiator			
9	Provides access and protects opportunities for enhancements to tourist destinations, community facilities, interstate commerce and also limits disproportionate effects to the community.	- More impacts to riparian vegetation affects river recreational experience	- More impacts to the median vegetation		
10	Incorporates sustainability by using locally available materials and environmentally-friendly processes	- Not a differentiator			
11	Protects or creates unique features for the area as a gateway	- Not a differentiator			
12	Protects wildlife needs	- More barrier effect impeding highway permeability	-Less barrier effect impeding highway permeability		
13	Protects Clear Creek	- More potential for creek encroachment - More visual impact from walls and tree removal - Less space for WQ features to be added - Degrades recreational experience	- Less potential for encroachment into creek - Less visual impact for walls and tree removal - More space for WQ features to be added		
14	Protects the defining historical elements of Clear Creek County	- More infrastructure, more visual impact	-Less infrastructure, less visual impact		

Widening Median vs. Creek

ACCELERATION AND DECELERATION LANES

SヨNV7 NOILV8ヨ7ヨコヨG

PEAK PERIOD SHOULDER LANE CRITERIA

Accleration and Deceleration Lanes

ID	Criteria	Options Ranking \quad Fair Better $^{\text {a }}$ Best	
		AASHTO Standard Acceleration and Deceleration Length for Interchange Ramps	Match Existing Acceleration and Deceleration Lengths for Interchange Ramps
Evaluation Criteria			
1	Addresses safety during PPSL operations	-Provides maximum safety benefit and meets current design standards	-Does not meet current standards and may decrease safety at acceleration and deceleration lanes
2	Maintains safety during non-peak times	-Provides maximum safety benefit and meets design standards	-Does not meet current standards and may decrease safety at acceleration and deceleration lanes
3	Improves mobility during peak times	- Longer ramps provide increased opportunities for merging and diverging increasing mobility	- Shorter ramps decrease opportunities for merging and diverging
4	Minimizes the effort required to maintain the option	- Not a differentiator	
5	Enables the project team to achieve the goal of opening PPSL by 1-Jul-15	- Increased Infrastructure increasing construction efforts and Project schedule.	-Less Infrastructure decreasing construction efforts and Project schedule.
6	Creates infrastructure investments that are reasonable to construct and provide the best value for their life cycle, function, and purpose.	-Additional Infrastructure investments provide less value for Project life cycle, function, and purpose.	- Maximizes use of existing infrastructure and provides best value for Project life cycle, function, and purpose

Accleration and Deceleration Lanes

Accleration and Deceleration Lanes

ID	Criteria	Options Ranking Fair Better $^{\text {a }}$ Best	
		AASHTO Standard Acceleration and Deceleration Length for Interchange Ramps	Match Existing Acceleration and Deceleration Lengths for Interchange Ramps
Evaluation Criteria			
15	Meets CDOT's and industry standards	-Meets design Standards	- Does not meet design standards
16	Achieves the mountain mineral belt aesthetic guidelines	-Not a differentiator	
17	Meets the 1-70 Mountain Corridor design criteria	-Not a differentiator	
18	Preserves opportunities for the AGS and the ultimate preferred alternative	-Not a differentiator	
19	Adaptable for future changes/projects	-Not a differentiator	
ID	Criteria	AASHTO Standard Acceleration and Deceleration Length for Interchange Ramps	Ranking ${ }^{\text {Fair }}$ \| Better ${ }_{\text {l }}$ Best
			Match Existing Accereration and Deceleration Lengths for Interchange Ramps
Issue Specific Criteria			
1	Clear Creek County Preference	- Less Preferred	- More Preferred
2	Impacts to compounding safety risk factors	- Less safety risk factors	- More safety risk factors
3	Meets definition of a PPSL project	- Increased infrastructure Improvements	- Optimizes existing infrastructure
4			
Identification of Preferred Option: Summary			

1. Addresses safety during PPSL operations
2. Maintains safety during non-peak times
3. Improves mobility during peak times
4. Minimizes the effort required to maintain the operation
5. Enable the project team to achieve the goal of opening the PPSL
6. Creates infrastructure investments that area reasonable to construct and provide the best value for their life cycle, function and purpose.
7. Allows for a process to engage and communicate with all the local, regions and national users of the I-70 Mountain Corridor
8. Creates opportunities to "correct past damage"
9. Provides access and protects opportunities for enhancements to tourist destinations, community facilities, interstate commerce and also limits disproportionate effects to the community.
10. Incorporates sustainability by using locally available materials and environmentally- friendly process
11. Protects or creates unique features for the areas as a gateway
12. Protects wildlife needs
13. Protects Clear Creek
14. Protects the defining historical elements of Clear Creek County
15. Meets CDOT's and industry standards
16. Achieves the Mountain Mineral Belt aesthetic guidelines
17. Meets the I-70 Mountain Corridor design criteria
18. Preserves opportunities for the AGS and the ultimate preferred alternative
19. Adaptable for future changes/projects

Retaining Walls

> $x x x$
$>x x x$
$>x x x$
>xxx

Emergency Response
> xxx
> $x x x$
$>x x x$
> $x x x$
> Public Involvement
> Online public meeting
> Schedule
> ALIVE Meeting
$>$ Next Section 106 Meeting
> Next PLT Meeting
>SH 103 Issue Taskforce Meeting

FUTURE TECH TEAM MEETINGS
 > DATES

10/7 8:30-11:30am at Idaho Springs
10/28 8:30-2:30pm at CDOT
11/18 8:30-2:30pm at Idaho Springs
12/16 8:30-2:30pm at CDOT

THANK YOUH!

1-70 EB Peak Period Shoulder Lane Project

Project Number: NHPP 0703-401
Project Code: 19474

Technical Team Meeting \#3

September 23, 2013
CDOT I-70 Mountain Corridor | HDR Engineering, Inc.

